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Abstract-A class of multi-dimensional Distributed-Element Models is proposed for constitutive
modeling in cyclic plasticity. A new formulation in the "invariant-yield-surface" space is presented
in which no kinematic hardening rule is needed to account for the subsequent yielding and strain
hardening behavior. This physically-motivated class of models is not only mathematically simple
but also parsimonious in parameters. Validity of the model is confirmed by comparison with
experimental results from the literature.

1. INTRODUCTION

Structures of simple configurations and homogeneous materials may usually be approxi
mated by simplified analytical models so that their response to complicated external loading
can be analysed in some efficient way. When such simplified models are used for structural
systems, the hysteretic response is often described by its overall interstory foree-deflection
relationship so as to avoid complex stress-strain calculations for which constitutive equa
tions governing material behavior at a point are needed (Jayakumar, 1987). Although
overall planar force-deflection representations in nonlinear structural analysis can reflect
behavior of structural members or substructures as a whole, including both material and
geometrical effects, they are not suitable for describing local response behavior in the case
of complex mechanical systems or complicated loading conditions in which responses in
different directions may interact significantly with one another. For that purpose, one needs
to introduce appropriate constitutive laws depicting stress-strain relations at different
material points, from which local response behavior can then be derived.

The one-dimensional Distributed-Element Model (DEM), introduced by Iwan (1966)
for structural dynamic analysis, consists of a set of N elements connected in parallel, each
ofwhich consists ofa linear spring with "stiffness" Ej in series with a slip element (Coulomb
damper) of strength (It, as shown in Fig. l. Each element in the assemblage is thus an
ideal elasto-plastic element that has a force-deflection (uniaxial stress-strain) behavior as

~"'~F=aA

X= EL

A;=A/N

Fig. 1. The Distributed-Element Model for one-dimensional (uniaxial) hysteresis.
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Fig. 2. Hysteretic restoring force behavior of an elasto-perfectly plastic element.

described in Fig. 2. The DEM has been considered as physically motivated, as many real
materials or mechanical systems can be thought of as having a similar structure. For
example, real materials may have a crystalline structure that is made up of a distribution
of slip-planes or dislocations of different slip strengths.

In order to extend the one-dimensional DEMs to multiple dimensions for constitutive
modeling of general plasticity, Iwan (1967) introduced the concept of a collection of nested
yield surfaces associated with a DEM, which move around in the stress space according to
some kinematic rules so that the Bauschinger effect could be accounted for in a more
realistic way. This class ofmulti-dimensional models for plasticity based on the distributed
element formulation provided a conceptual genealization of the customary formulation of
the incremental theory of classical plasticity. However, the numerical implementation of
such a class of multi-dimensional models involves tracing subsequent yield surfaces and
hence is quite difficult and computationally inefficient. With the same motivation, Yoder
(1980) proposed an alternative version of plasticity theory formulated in the strain space
based on a different class of DEMs from that used by Iwan. Yoder's theory is closely
parallel to the traditional theory ofplasticity, but interchanges the roles of stress and strain.
In contrast to Iwan's multi-dimensional model, the model proposed by Yoder consists of
a collection of movable yield surfaces formulated in the strain space. However, the same
problem arises pertaining to the numerical implementation of the model behavior.

In this study, a new class ofconstitutive models for plasticity is proposed based on the
distributed-element behavior, in which yield surfaces ofdifferent yield levels are introduced
for the elements involved in a model. The main idea behind this new class of DEMs is that
the yield surfaces are defined in the element-stress space and are "invariant", i.e. fixed from
moving in that space, no matter how the model response varies. Due to the invariant
characteristics of the yield surfaces thus defined, the theoretical formulation ofsuch models
is so simple that there is no need for any kinematic hardening rules for subsequent yielding
behavior. Furthermore, the numerical implementation of the new model is straightforward
and highly efficient, even though quite a few elements are needed for the model to yield
good results in applications. The validity of this new class of Distributed-Element Models
is demonstrated by comparison with experimental results from the literature. It is shown
that excellent response predictions using the new models are obtained under complicated
multi-axial loading conditions. Another point of interest is that the behavior of this new
class of DEMs provides us with a physical model for understanding complicated response
mechanisms in cyclic plasticity. This point is examined further in a companion paper (Chiang
and Beck, 1993).

2. THEORETICAL FORMULATION

Before looking into the generalization of the one-dimensional (1-D) DEMs to higher
dimensions, let us examine in detail the behavior ofa I-D DEM as shown in Fig. 1. It can
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be shown (Iwan, 1967) that when the number of elements involved in the model becomes
very large so that the element stregnths u1 are described in terms of some distribution
function c/J(u*), where c/J(u*) dq* denotes the fraction of the total number of elements that
have a slip stress between u* and u*+du*, then the model behavior can be described by

u(S) = L" u(s, u*)c/J(u*) du*,

where the distribution function c/J(u*) can be any function that satisfies

i'" c/J(u*) du* = 1.

(1)

(2)

It has been shown (Jayakumar, 1987) that the 1-0 OEMs actually fall within a general
class of Masing models whose behavior is described by Masing's hypothesis (Masing,
1926) and some extended rules for hysteresis.

In the following, we will extend the 1-0 models to the general multi-dimensional case
so that they can be used for constitutive modeling in cyclic plasticity problems. To account
for the general multi-axial response behavior, we need to first define the basic kinematic
behavior of the distributed elements constituting the model. We postulate the following
rules for the new multi-dimensional OEM:

(1) Each element in the model is subject to the same total-strain response as experi
enced by the model itelf.

(2) Each element has the response behavior of ideal plasticity so that its associated
yield surface remains "invariant" in the stress space. In other words, the yield
surface associated with an element is described by a function that depends only on
the element stress.

(3) All the elements have the same elastic properties and the associated yield functions
have the same mathematical form, but they have different yield constants which
are governed by some distribution function.

(4) The stress state of the model is defined as the average of the stress states of all the
elements. Following these rules, the overall stress of the model can be expressed
in terms of the element stress states as follows:

8(i) == L" 8(8, k)c/J(k) dk, (3)

where 8 and 8 denote the stress tensor uij and the strain tensor sij, respectively, and 8(8, k)
is the corresponding stress state of the elements having yielding constant k governed by a
distribution function c/J(k). Note the resemblance of eqn (3) to eqn (1). The constant k is
related to the yield function associated with each element in the model so that the equation

F(8(k),k) = 0 (4)

represents a yield surface associated with an element of yield constant k in the element
stress space. Note that without loss of generality, we can choose

k == uo(k), (5)

where uo(k) is the uniaxial yield stress of the associated element parametrized by k. The
definition of the yield function defined in eqn (4) is conceptually the same as that used in
the classical theory ofplasticity so as to characterize the general behavior ofmaterials under
multi-axial loading conditions. However, in this new formulation, the yield surfaces are
defined in the element-stress space, not in the model-stress space as in the classical theory
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Fig. 3. Invariant yield surfaces nested in the element stress space.

of plasticity. If the element-stress spaces are graphically overlaid, then the yield surfaces
are nested within one another due to the different yield strengths of the elements. This is
illustrated in Fig. 3, where concentric circles of different radii represent yield surfaces of
different yield strengths in the two-dimensional (biaxial) case. Moreover, since each element
in the model has the behavior of ideal plasticity, the yield surfaces associated with the
elements will remain "invariant" in their space of definition, no matter how the model
behaves, so complicated hardening rules for response after initial yielding are avoided. The
combined element-stress space is therefore called the "invariant-yield-surface" space. An
important remark regarding the overall model behavior is that the stress state of the model
may possibly lie outside some of the yield surfaces associated with the elements in the
"invariant-yield-surface" space, which makes the new model distinctive from those based
on the classical multi-yield-surface theory, by which a model stress state can never lie outside
any of the yield surfaces. It is also this formulation in the "invariant-yield-surface" space
that makes this new model mathematically simple and computationally effective, in contrast
to the aforementioned multi-dimensional DEMs proposed by Iwan (1967) and Yoder
(1980).

If the yield surface associated with an element with yield constant k is described by
eqn (4), then under the assumption of ideal plasticity, we have that when F(8(k) , k) = 0,
plastic flow takes place without limit, and therefore,

of
dF = o(1ij(k) d(1ij(k) = 0 (6)

for plastic flow. From the normality rule of plastic flow given by the classical theory of
plasticity, which specifies that the direction of a plastic strain increment is normal to the yield
surface at the current stress point, we have the flow rule for an element of yield strength k:

of
dBij(k) = o(1ij(k) dA,(k), (7)

where dA,(k) is a coefficient of proportionality, whose value can be determined as follows.
Firstly, we introduce the general stress-strain relation in incremental form as

(8)

where Cijmn denotes the tensor of elastic constants and it has been assumed that all elements
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in the model have the same elastic constants and identical total-strain response so that the
dependence of Cijmn and demn on k can be dropped. Based on eqns (6), (7) and (8), we can
find the expression for the coefficient of proportionality as :

(9)

Summarizing from the above, we arrive at the following set of constitutive equations
for the new Distributed-Element Model for general plasticity formulated in the "invariant
yield-surface" space:

8m = !'" 8(6, k)4J(k) dk,

and

F(8(k) ,k) ~ 0 always.

If

F(8(k) ,k) = 0,

and

of
dF = o(Jjj(k) d(Jij(k) = 0, (never> 0),

then

duij(k) = Cijmn(demn - O(J~~k) dA,(k») ,

where dA,(k) is given by eqn (8).
If eqn (lOc) or (lOd) is violated, then

(lOa)

(lOb)

(lOc)

(10d)

(IOe)

(1Of)

Throughout the above, all the derivatives involving F are to be evaluated at the current
value of 8(k). Equation (IOf) signifies that the instantaneous element response will be
linearly elastic if the element is not yielded (F(8(k) ,k) < 0), or if it is yielded but then
subject to a condition of unloading (dF < 0).

Through the equations in (10), the model behavior is completely defined as long as the
mathematical forms of the two material functions, the yield-strength distribution function
4J(k) and the element yield function F(8(k) , k), are specified. The way to define the dis
tribution function 4J(k) is similar to that used for the one-dimensional OEMs, since the
general multi-dimensional model should reduce to the one-dimensional case as the loading
is restricted to be uniaxial. Thus, similar to eqn (2), the distribution function satisfies

!'" 4J(k) dk = 1. (11)

Also, by eqn (lOa), using Vk, (J II (k) = k and (Jij(k) = 0 if i -# 1 or j #: 1 (which signifies
that every element is in yielding state under the uniaxial loading condition), we have

(Ju = !'" k4J(k) dk, (12)

where (Ju denotes the ultimate uniaxial stress of the model. Equations (11) and (12) provide
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two conditions for the yield-strength distribution function c/J(k) to satisfy. Therefore, c/J(k)
can be chosen initially as any probability density function that has the mean value o"u as a
parameter, and then the resulting response of the DEM can be studied to examine the
consequences of this choice. To this end, the Rayleigh distribution, defined as

1t k (-11: k
2

)
c/J(k) = "2 a: exp 4 a: ' (13)

serves as a good candidate for c/J(k) due to its analytically-tractable form. Additional
parameters may be incorporated in the definition of c/J(k), if desired, so that more general
yielding behavior can be modeled (Chiang, 1992).

As for the yield function of the elements, there have been numerous yield criteria
proposed in plasticity theory for various materials. Among them, the von Mises yield
criterion, described by [using (5)] :

(14)

is probably the most widely recognized criterion for modeling yielding behavior ofmaterials
due to its physical consistency and mathematical tractability. In eqn (14), sij denotes the
deviatoric stress tensor defined as

where {)ij is the Kronecker delta function. Another possibility is Tresca's criterion which
has been used extensively in the classical theory ofplasticity (Mendelson, 1968). Ofcourse,
the yield function can be chosen appropriately for the system under consideration based
on any criterion used in plasticity theory or even based on an empirical condition identified
experimentally.

It is not difficult to show that the elastic constants, assumed to be identical for all
elements, are essentially the same as those of the model itself. This property makes the
modeling of this class of multi-dimensional DEMs very straightforward, since the elastic
constants associated with various materials have been well documented, or can be found
through simple experiments. It should be pointed out that although we assume that all the
elements in a DEM are subject to the same total strain increment as experienced by the
model itself, i.e. deij(k) = deij' Vk, the plastic strain response of the model is given by

det = 1'" det(k)c/J(k) dk, (15)

as can be derived using eqns (3) and (8), where det(k) is to be found from eqns (7) and (9),
and it is different for each element, in general.

In summary, this class ofDEMs formulated in the "invariant-yield-surface" space for
cyclic plasticity involves only very few parameters that have clear physical significance. In
the case where isotropic materials are of interest, if the Rayleigh distribution is used for the
yield-strength distribution function c/J(k), only three parameters: uniaxial peak stress au,
Young's modulus E and Poisson's ratio v, are sufficient to represent realistic multi-axial
elastic-plastic response behavior. The modeling process or the identification procedure for
the new DEM is therefore simple and efficient.

3. NUMERICAL IMPLEMENTATION

In theory, a Distributed-Element Model may consist of an infinite number of elements
whose yield strengths are distributed according to the specified distribution function c/J(k),
and the model response is found by keeping track of each element's behavior [cf. eqn (10)].
However, to numerically implement the formulation, one has to restrict the model to a



Models for cyclic plasticity-I 475

finite number of elements. In order to preserve the advantages of this simple, physical
model, it is proposed that the introduction of the finite number of elements be made
according to the specified yield-strength distribution function tjJ(k), so that the number of
parameters involved in the model does not increase with the number ofelements introduced.
In the case where the Distributed-Element Model consists of a finite number of, say N,
elements, the integral operation in eqn (lOa) is replaced by the summation operation as
follows:

N

8(t) = L 8(8, k;)rjJ(k;),
;~ I

where the "weighting function" rjJ(k;) satisfies

N

L rjJ(k;) = I,
;~ I

in place of eqn (11). Also eqn (12) becomes

N

L k;rjJ(k;) = au·
;= I

(16)

(17)

(18)

In order to obtain smooth response curves, one can choose, without loss of generality,

1
rjJ(k;)=N Vi=I, ... ,N, (19)

and the yield constants ki , i = I, ... , N, are selected based on the specified distribution
function tjJ(k), k E [0, (0), so that each time a new element yields, the model loses liN of its
initial stiffness. This can be done by dividing the region below the curve described by the
distribution function into N equal-area portions, and selecting k; as a representative value
for the ith portion, so that eqns (18) and (19) are satisfied, that is

N

L k; = Nau •
;~ I

(20)

The aforementioned modeling procedure is illustrated schematically in Fig. 4. For most
applications, it suffices to use 10 elements or so in representing the new model in order to
get a reasonably smooth hysteresis curve. For example, the yield constants for the 10
elements corresponding to a Rayleigh distribution can be defined as:

9(k)

Fig. 4. Selection of yield constants for a finite number ofelements according to the specified strength
distribution function.
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Read strain increment A£",,,

Compute F(";) Vi. 1..... N

Fig. 5. A flow diagram showing numerical procedure for obtaining stress response of an N-element
OEM.

KI = 0.2638, K2 = 0.4601, K3 = 0.6097, K4 = 0.7448, Ks = 0.8767,

K6 = 1.0128, K7 = I.I612, Kg = 1.3347, Kg = 1.5630, K10 = 1.9732, (21)

where we define K; == k;/(Ju'
The numerical procedure for obtaining the stress response of an N-element model

based on the invariant-yield-surface formulation, subject to some prescribed strain path,
can be best described by a flow diagam as shown in Fig. 5, where we assume that the strain
increment in each loading step is small; otherwise, some subdivision of As is needed to
accurately monitor whether or not eqns (tOe) and (IOd) are satisfied. As can be seen from
the flow diagram in Fig. 5, the numerical implementation of this new multi-dimensional
class of DEMs is surprisingly simple and computationally efficient. This is due to the
formulation in the invariant-yield-surface space, which avoids the usually complicated
hardening rules required for accounting for the Bauschinger effect in cyclic plasticity.

4. AN APPLICATION TO BIAXIAL LOADING

Simulation studies on the response ofthe new Distributed-Element Model to prescribed
strain paths are conducted to examine the model behavior in the biaxial tension-torsion
case, for which published work is readily available for comparison. Lamba and Sidebottom
(1 978a, b) conducted a series of biaxial tension-torsion tests on copper in which cyclic,
nonproportional axial-torsional strain paths were applied to examine material response
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behavior. The test examples used were thin-walled hollow cylindrical shafts and were loaded
with combined axial force and torsion, so that the tensors of stress and strain are uniform
in space and can be represented approximately as

o
o )o ,

-yell

(22)

where the coefficient y represents the Poisson effect which is a variable when inelastic
deformations are involved in the response. It can be shown that if we assume incom
pressibility of plastic deformation, for example, then we have the following approximate
expression for y:

(23)

where v is the Poisson's ratio for linear elasticity.
In the simulation studies, the model used consists of 10 distributed elements, and the

Rayleigh distribution is used for describing the yield-strength distribution in the formu
lation, so that eqn (21) defines the yield constants of the elements. The model parameters
used are E = 16,700 ksi, v = 0.33, and (1u = 30 ksi, which are taken directly from the
experimental results. The prescribed strain loading paths are shown in Fig. 6, for which the
corresponding experimentally-observed stress responses are available (Lamba and Side
bottom, 1987a, b), as shown in Figs 7 and 8. Note that the loading path sequence in Fig.
6(a) is 0-1-0-2-0-3-0-... , so as to study the property of erasure-of-memory, which will be
elucidated in more detail in Part II of this study. Also, the stress path resulting from the
repetition of path 0 each time is not plotted in Fig. 7(a) for clarity.

The stress responses predicted using the DEMs are shown, respectively, in Figs 9 and
10, where both von Mises' and Tresca's yield criteria were used in the simulations for
comparison purposes. In general, the results obtained in all cases are both qualitatively and
quantitatively consistent with those observed experimentally, and Tresca's yield condition
gives slightly better results than von Mises' does considering the value of the ultimate shear
stress predicted. Note that Fig. 9(a) contains the full stress path whereas Fig. 7(a) does not.
It can be clearly seen in Figs 7 and 8, that there exists equilibrium points corresponding to
uni-directional strain paths, at which the stress increment,s approach zero for appreciable
strain increments. In addition, it is suggested from the experimental results and the model
predictions that there exists a limit surface in the stress space in each of the two loading
cases beyond which stress states never go. Moreover, an "erasure-of-memory" property
(Lamba and Sidebottom, 1978a, b) is clearly demonstrated by the DEM, as one can see
that the model is always brought back to the same stress state every time the path 0 in Fig.
6(a) is traced. This is in good agreement with the experimental results. In Part II of this
study (Chiang and Beck, 1993), the issues of the existence and uniqueness of equilibrium
points and those of the limit surface will be addressed in detail based on the behavior of
the new class of DEMs.

Other important response features in cyclic plasticity, such as smooth yielding, non
linear strain hardening and multi-axial Bauschinger effect are also well demonstrated by
the new DEM. The computational effort involved in obtaining the response based on the
new model is small, since no kinematic hardening rule is required to account for the
subsequent yielding behavior of materials. This makes the new model suitable for response
analysis of complex structural systems using the finite-element method. We remark that
models based on the classical theory ofplasticity in general do not predict response behavior
as well as the DEMs do, as we can see in Fig. II, where different yield conditions together
with different kinematic hardening rules were employed to predict the response to the strain
loading path given in Fig. 6(b). The dashed curve in each plot of Fig. II represents the

SAS 31:4-C
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Fig. 6. Prescribed strain loading paths for response studies of the proposed multi-dimensional
DEMs [from Lamba and Sidebottom (1978)].

locus of the center of the yield surface, which is irrelevant to the discussion here. A clear
deficiency of the first two models, which use, respectively, the von Mises yield condition with
the Prager hardening rule and the Tresca yield condition with the Ziegler hardening rule,
is that the predicted axial stress does not return to zero. These two models also fail to
demonstrate the behavior of equilibrium points and a limit surface exhibited by real
materials. In Fig. ll(c), a much more elaborated model is used, which employs a Tresca
yield surface, a Tresca limit surface, together with the Mroz kinematic hardening rule (Mroz,
1967), and an empirical nonlinear strain hardening assumption (Lamba and Sidebottom,
1978b), so as to give the plasticity model a maximum chance of success.

It should be noted that in the preceding examples, we did not use any system identi
fication technique to optimally choose the model parameters by fitting the stress and strain
histories. Instead, the values of the parameters E and v were those specified by Lamba and
Sidebottom and (TN was read directly from the corresponding biaxial test curves. This advan
tage is obviously due to the physical consistency and the parsimony in parameters of the
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Fig. 7. Experimentally-observed stress response ofcopper to the prescribed strain path given in Fig.
6(a) [from Lamba and Sidebottom (1978)]: (a) biaxial stress space; (b) axial stress--strain space;

(c) shear stress--strain space.
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Fig. 8. Experimentally-observed stress response ofcopper to the prescribed strain path given in Fig.
6(b) [from Lamba and Sidebottom (1978)]. (a) biaxial stress space; (b) axial stresHltrain space;

(c) shear stresHltrain space.

proposed OEM for cyclic plasticity. In the case where complex structural systems are
of interest, the parameters may be optimally identified using structural response data.
Furthermore, we can treat constants in the yield condition required for the model as
parameters to be identified, so that the "best" result may be achieved in practice.



Models for cyclic plasticity-I 481

(a) Biaxial stress space

20 ,..-----r----~----or_---...,

40-20 0 20

Axial stress (ksi)

s

-20 L... I- I-- I-__---'

-40

...... 10

g
!I.l
!I.l

~ 0
!I.l

j -s
." -10

-15

15

(b) Axial stress-slrain space

40 ,....-....,--....,.--~--...,..--_r--..,

30

...... 20.;;;

.>oil 10--!I.l
!I.l
4) 0:::
!I.l

~-10
><«

-20

-30

-40
-0.4 -0.2 o 0.2 0.4

Axial strain (%)

0.6 0.8

(c) Shear slress-strain space
20,..----r---...,...----r--.....,r----,.----,

1.51.0-0.5 0 0.5

Shear slrain (%)

-1.0

-15
-20 L..-__..L-__..I-__-J.__-..I I-__,.I

-1.5

15

,... 10
!I.l

~ 5
!I.l
!I.l

~ 0
!I.l

~ -5
.c
." -10
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stress--strain space.
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Fig. 10. Stress response predicted by a new DEM subject to the prescribed strain path given in Fig.
6(b) (Tresca--, von Mises ----): (a) biaxial stress space; (b) axial stress-strain space; (c) shear

stress-strain space.
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Fig. II. Response predicted by different models of plasticity to the strain path given in Fig. 6(b) :
(a) von Mises' yield surface with Prager's hardening rule; (b) Tresca's yield surface with Ziegler's
hardening rule; (c) Tresca's yield surface and limit surface with Mroz' hardening rule [from Lamba

and Sidebottom (1978)].

5. CONCLUSIONS

A new class of Distributed-Element Models is proposed for constitutive modeling in
cyclic plasticity. In the theory, a formulation in the "invariant-yield-surface" space is
presented so that this physically-motivated model is not only mathematically simple and
computationally efficient but also parsimonious in parameters. The physical consistency of
this new class of Distributed-Element Models was also demonstrated by comparison with
experimentally-observed results, in which excellent response predictions using the new
models were obtained under nonproportional biaxial loading conditions.
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We remark that the new Distributed-Element Model for multi-dimensional plasticity
could be viewed as a statistical mechanical model which is a generalization of the classical
formulation of plasticity theory. In the new theory, the yield condition for elastic-plastic
response characterization and the flow rule for prescribing plastic strain increments are
treated in a statistical sense, so that the model response is the statistical average of the
element response, each ofwhich follows from the classical theory of plasticity. The elements
could be viewed physically as a distribution of slip-planes or dislocations of different slip
strengths in a small volume of the material at a point of interest.

In Part II of this study (Chiang and Beck, 1993), we will address some important
properties associated with the new class of DEMs for general plasticity. Thorough under
standing of these properties helps to explain some material properties and complicated
material behavior under cyclic multi-axial loading conditions.
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